
The Semantically Reflected Digital Twin
ICTAC Summer School Tutorial 2022

Einar Broch Johnsen

Silvia Lizeth Tapia Tarifa

Rudolf Schlatte

Eduard Kamburjan

University of Oslo

Yesterday:

• Part I Digital Twins Introduction:

Concepts and Engineering Perspectives

• Part II Modelling Knowledge using Semantic Technologies

Today:

• Part III Modelling Physical Systems

• Part IV Semantically Reflected Digital Twins

Physical Model

Summary: Yesterday

• Concept of digital twins

• Logic and ontologies for asset models

Next Part

Integration of open, industrial standards for simulation and interfaces.

• How to integrate simulations?

Modelica for physical modeling

• How to interface with sensors and actuators?

Functional Mock-Up Interface (FMI)

Later

Putting it all together

The Semantically Reflected Digital Twin 2 / 36

Outline

• Modeling physical systems: a brief introduction to Modelica

• The FMI standard: generating black-box simulators (“FMUs”) from

Modelica models

• Talking to simulators within a SMOL model

The Semantically Reflected Digital Twin 3 / 36

Outline (practical)

We will do the following:

• Model a water tank in Modelica;

• Compile the Modelica model into an FMU;

• Write a simple SMOL program that loads the FMU;

• Simulate and control the system’s behavior over time

The Semantically Reflected Digital Twin 4 / 36

Software we will be using

• SMOL, a language for integrating knowledge bases and simulations

• See http://smolang.org

• Code at https://github.com/smolang/SemanticObjects

• Modelica: a language for modeling physical systems

• download from https://www.openmodelica.org/?id=78

• https://modelica.readthedocs.io/

• https://www.openmodelica.org

The Semantically Reflected Digital Twin 5 / 36

http://smolang.org
https://github.com/smolang/SemanticObjects
https://www.openmodelica.org/?id=78
https://modelica.readthedocs.io/
https://www.openmodelica.org

A water tank, as designed by AI

“A sketch of a watertank,

a faucet on top fills the

tank with water, water

flows out from a hole at

the bottom of the tank,

by Albrecht Dürer”

The Semantically Reflected Digital Twin 6 / 36

A water tank, as designed by AI

“A sketch of a watertank,

a faucet on top fills the

tank with water, water

flows out from a hole at

the bottom of the tank,

by Albrecht Dürer”

The Semantically Reflected Digital Twin 6 / 36

A water tank, as designed by AI

“A sketch of a watertank,

a faucet on top fills the

tank with water, water

flows out from a hole at

the bottom of the tank,

by Albrecht Dürer”

The Semantically Reflected Digital Twin 7 / 36

A water tank, behaviorally

l current level in tank

d drain rate, “size of hole”

f rate of inflow

v valve control (0 or 1)

l’ the rate of change in level

Behavior of the tank

l ′ = −d ∗ l + v ∗ f

The Semantically Reflected Digital Twin 8 / 36

A water tank, behaviorally

l current level in tank

d drain rate, “size of hole”

f rate of inflow

v valve control (0 or 1)

l’ the rate of change in level

Behavior of the tank

l ′ = −d ∗ l + v ∗ f

The Semantically Reflected Digital Twin 8 / 36

The water tank in Modelica

model Tank

parameter Real d = 0.5 "drain rate";

parameter Real f = 2.0 "rate of inflow";

input Boolean v(start = false) "Valve closed / open";

output Real l(start = 5) "water level";

Real inFlow "Current fill rate";

equation

der(l) = (- d) * l + inFlow;

if v then inFlow = f; else inFlow = 0.0; end if;

end Tank;

The Semantically Reflected Digital Twin 9 / 36

Modelica

• Run watertank in openmodelica (omedit)

. . . Demo . . .

The Semantically Reflected Digital Twin 10 / 36

Black-Box Simulators: The FMI Standard

• A digital twin combines multiple models of its subsystems, as

expressed by the asset model

• https://fmi-standard.org (“The leading standard to exchange

dynamic simulation models”) shows how to combine FMUs

(“functional mock-up units”)

• Modelica can create FMUs from models

• SMOL can control FMUs

The Semantically Reflected Digital Twin 11 / 36

https://fmi-standard.org

Generating an FMU

• Generate within OMEdit: Right-click, select “Export → FMU”

• Generate from the command line: Run omc generate fmu.mos,

with the file generate fmu.mos containing the following:

installPackage(Modelica);

loadModel(Modelica);

loadFile("simple_tank.mo");

buildModelFMU(Tank, version="2.0", fmuType="me_cs");

getErrorString()

The Semantically Reflected Digital Twin 12 / 36

Running the FMU inside SMOL

• SMOL can intantiate FMUs, via the simulate expression.

• FMUs can be seen as peculiar objects, with writable and readable

fields and a tick method to advance time.

• The names of the fields come from the metadata inside the FMU

The Semantically Reflected Digital Twin 13 / 36

Running the FMU inside SMOL (2)

main

FMO[in Boolean v, out Double l] de

= simulate("Tank.fmu", v = False);

print(de.l);

while de.l > 2 do

de.tick(1.0);

print(de.l);

end

de.v = True;

while de.l < 5 do

de.tick(1.0);

print(de.l);

end

end

The Semantically Reflected Digital Twin 14 / 36

Running the FMU inside SMOL

Demo ...

The Semantically Reflected Digital Twin 15 / 36

Yesterday:

• Part I Digital Twins Introduction:

Concepts and Engineering Perspectives

• Part II Modelling Knowledge using Semantic Technologies

Today:

• Part III Modelling Physical Systems

• Part IV Semantically Reflected Digital Twins

Structural Self-Adaptation

• We can access the sensors of the

physical system (FMI),

• access the structure of the physical

system (SWT), and

• simulate the digital design (FMI).

Putting it all together

• Compare simulations to sensors

• Compare digital with physical structure

What is the digital structure?

• Self-adapt to changes in physical system

Self-adaptation?

The Semantically Reflected Digital Twin 17 / 36

Structural Self-Adaptation

• We can access the sensors of the

physical system (FMI),

• access the structure of the physical

system (SWT), and

• simulate the digital design (FMI).

Putting it all together

• Compare simulations to sensors

• Compare digital with physical structure

What is the digital structure?

• Self-adapt to changes in physical system

Self-adaptation?

DTPT

Commands

Sensor Data

The Semantically Reflected Digital Twin 17 / 36

Structural Self-Adaptation

• We can access the sensors of the

physical system (FMI),

• access the structure of the physical

system (SWT), and

• simulate the digital design (FMI).

Putting it all together

• Compare simulations to sensors

• Compare digital with physical structure

What is the digital structure?

• Self-adapt to changes in physical system

Self-adaptation?

DTPT

Commands

Sensor Data

The Semantically Reflected Digital Twin 17 / 36

Structural Self-Adaptation

• We can access the sensors of the

physical system (FMI),

• access the structure of the physical

system (SWT), and

• simulate the digital design (FMI).

Putting it all together

• Compare simulations to sensors

• Compare digital with physical structure

What is the digital structure?

• Self-adapt to changes in physical system

Self-adaptation?

DTPT

Commands

Sensor Data

The Semantically Reflected Digital Twin 17 / 36

Structural Self-Adaptation

• We can access the sensors of the

physical system (FMI),

• access the structure of the physical

system (SWT), and

• simulate the digital design (FMI).

Putting it all together

• Compare simulations to sensors

• Compare digital with physical structure

What is the digital structure?

• Self-adapt to changes in physical system

Self-adaptation?

DTPT

Commands

Sensor Data

The Semantically Reflected Digital Twin 17 / 36

Self-Adaptation (I)

Digital Twins: Self-Adaptation

Self-adaptation means to automatically reestablish some property of a

system, by reacting to outside stimuli. For Digital Twins, the “outside”

is the physical system.

Two kinds of self-adaptation to reestablish the twinning property:

• Behavioral self-adaptation if sensors and simulators mismatch

• Structural self-adaptation if structures mismatch

The Semantically Reflected Digital Twin 18 / 36

MAPE-K

MAPE-K is an established conceptual framework to structure self-

adaptive systems.

• A Knowledge component keeps

track of information and goals for

the self-adaptation loop:

• Monitor the situation

• Analyze whether the situation

requires adaptation

• Plan the adaptation

• Execute the plan

Monitor

Analyse Plan

Execute

Self-Adaptive DT

AM

PT

Knowledge

KB

The Semantically Reflected Digital Twin 19 / 36

MAPE-K

MAPE-K is an established conceptual framework to structure self-

adaptive systems.

• A Knowledge component keeps

track of information and goals for

the self-adaptation loop:

• Monitor the situation

• Analyze whether the situation

requires adaptation

• Plan the adaptation

• Execute the plan

Monitor

Analyse Plan

Execute

Self-Adaptive DT

AM

PT

Knowledge

KB

The Semantically Reflected Digital Twin 19 / 36

Self-Adaptation (II)

Behavioral Self-Adaptation

Simulated (=expected) behavior of certain components does not match

the real (=measured) behavior of the sensors.

• Monitor sensors

• Analyze the relation to simulation

• Plan repair by, e.g., finding new simulation parameters

• Exchange simulators or send signal to physical system

Reasons

• Sensor drift

• Modeling errors

• Faults

• Unexpected events

The Semantically Reflected Digital Twin 20 / 36

Self-Adaptation (III)

Structural Self-Adaptation

Simulated

(= lifted)

structure of digital system does not match real (=

expressed in asset model) structure.

Semantically Lifted Programs

We need to express the program structure, so we can uniformly access it

together with the asset model. How to apply semantic web technologies

on programs? ⇒ Semantical lifting.

Semantical lifting is a mechanism to automatically generate the

knowledge graph of a program state.

The Semantically Reflected Digital Twin 21 / 36

Self-Adaptation (III)

Structural Self-Adaptation

Simulated

(= lifted)

structure of digital system does not match real (=

expressed in asset model) structure.

Semantically Lifted Programs

We need to express the program structure, so we can uniformly access it

together with the asset model. How to apply semantic web technologies

on programs? ⇒ Semantical lifting.

Semantical lifting is a mechanism to automatically generate the

knowledge graph of a program state.

The Semantically Reflected Digital Twin 21 / 36

Self-Adaptation (III)

Structural Self-Adaptation

Simulated (= lifted) structure of digital system does not match real (=

expressed in asset model) structure.

Semantically Lifted Programs

We need to express the program structure, so we can uniformly access it

together with the asset model. How to apply semantic web technologies

on programs? ⇒ Semantical lifting.

Semantical lifting is a mechanism to automatically generate the

knowledge graph of a program state.

The Semantically Reflected Digital Twin 21 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Self-Adaptation

Repair

To self-adapt we must (1) detect broken twinning and (2) repair it.

• Access PT structure through asset model

• Changes of PT are visible in asset model

• Asset model accessible directly to DT

• Detect changes through combined

knowledge graph

• Information for repair available there!

The Semantically Reflected Digital Twin 22 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

conf conf'

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

conf conf'

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Semantically Lifted States

A semantically lifted program can interpret its own program state as a

knowledge graph and reflect on itself through it.

conf conf'

conf''

Programming and Debugging with Semantically Lifted States, Kamburjan et al. [ESWC’21]

The Semantically Reflected Digital Twin 23 / 36

Example

1 class C (Int i)

2 Unit inc() this.i = this.i + 1; end

3 end

4 main

5 C c = new C(5);

6 Int i = c.inc();

7 end

prog:C a prog:class. prog:C prog:hasField prog:C_i.

run:obj1 a prog:C. run:obj1 prog:C_i 5.

...

prog:C prog:hasMethod prog:C_inc.

prog:inc prog:hasBody prog:s;

...

run:stack run:top run:frame1. run:frame1 run:executes prog:inc.

...

The Semantically Reflected Digital Twin 24 / 36

Example

1 class C (Int i)

2 Unit inc() this.i = this.i + 1; end

3 end

4 main

5 C c = new C(5);

6 Int i = c.inc();

7 end

prog:C a prog:class. prog:C prog:hasField prog:C_i.

run:obj1 a prog:C. run:obj1 prog:C_i 5.

...

prog:C prog:hasMethod prog:C_inc.

prog:inc prog:hasBody prog:s;

...

run:stack run:top run:frame1. run:frame1 run:executes prog:inc.

...

The Semantically Reflected Digital Twin 24 / 36

SMOL

Implementation

Semantical lifting and reflection is implemented in the Semantic Micro

Object Language, smolang.org.

Given the lifted state, we can use it for multiple operations.

• Access it to retrieve objects without traversing pointers.

• Enrich it with an ontology, perform logical reasoning and retrieve

objects using a query using the vocabulary of the domain.

• Combine it with another knowledge graph and access external data

based on information from the current program state.

The Semantically Reflected Digital Twin 25 / 36

smolang.org

Semantic Programming

1 class Server(List<Task> taskList) ... end

2 class Scheduler(List<Platform> serverList)

3 Unit reschedule()

4 List<Server> l

5 := access("SELECT ?x WHERE {?x a :Overloaded}");

6 this.adapt(l);

7 end

8 end

:Overloaded

owl:equivalentClass [

owl:onProperty (:taskList, :length);

owl:minValue 3;

].

The Semantically Reflected Digital Twin 26 / 36

Semantic Programming

1 class Server(List<Task> taskList) ... end

2 class Scheduler(List<Platform> serverList)

3 Unit reschedule()

4 List<Server> l

5 := access("SELECT ?x WHERE {?x a :Overloaded}");

6 this.adapt(l);

7 end

8 end

:Overloaded

owl:equivalentClass [

owl:onProperty (:taskList, :length);

owl:minValue 3;

].

The Semantically Reflected Digital Twin 26 / 36

Demo

Semantic Reflection

Example

Back to digital twins

Controller

O
u
te

r
W

a
ll

O
u
te

r
W

a
ll

In
n
e
r

W
a
ll

O
u
ts

id
e

O
u
ts

id
e

Clock

• Monitor consistency

• Monitor twinning

• Adapt to addition of new rooms

Digital Twin Reconfiguration Using Asset Models, Kamburjan et al. [ISoLA’22]

Ensuring Correctness for Self-Adaptive Digital Twins, Kamburjan et al. [ISoLA’22]

The Semantically Reflected Digital Twin 27 / 36

Model Description

<fm iMode lDesc r ip t ion fm iVe r s i o n=” 2 .0 ” modelName=”Example” . . .>

<CoSimulat ion need sExecu t i onToo l=” t r u e ” . . . />

<Mode lVar iab les>

<Sca l a rVa r i a b l e name=”p” v a r i a b i l i t y=” con t i nuou s ”

c a u s a l i t y=” paramete r ”>

<Real s t a r t=” 0 .0 ”/>

</ Sca l a rVa r i a b l e>

<Sca l a rVa r i a b l e name=” i npu t ” v a r i a b i l i t y=” con t i nuou s ”

c a u s a l i t y=” i npu t ”>

<Real s t a r t=” 0 .0 ”/>

</ Sca l a rVa r i a b l e>

<Sca l a rVa r i a b l e name=” v a l ” v a r i a b i l i t y=” con t i nuou s ”

c a u s a l i t y=” output ” i n i t i a l=” c a l c u l a t e d ”>

<Real />

</Mode lVar iab les>

<ModelStructure> . . . </ModelStructure>

</ fm iMode lDesc r ip t ion>

The Semantically Reflected Digital Twin 28 / 36

SMOL and FMI

Functional Mock-Up Objects (FMOs)

Tight integration of simulation units using FMI into programs.

1 //setup

2 FMO[out Double val] shadow =

3 simulate("Sim.fmu", input=sys.val, p=1.0);

4 FMO[out Double val] sys = simulate("Realsys.fmu");

5 Monitor m = new Monitor(sys,shadow); m.run(1.0);

Integration

• Type of FMO directly checked against model description

• Variables become fields, functions become methods

• Causality reflected in type

Knowledge Structures over Simulation Units, Kamburjan and Johnsen [ANNSIM’22]

The Semantically Reflected Digital Twin 29 / 36

SMOL and FMI

Functional Mock-Up Objects (FMOs)

Tight integration of simulation units using FMI into programs.

1 //setup

2 FMO[out Double val] shadow =

3 simulate("Sim.fmu", input=sys.val, p=1.0);

4 FMO[out Double val] sys = simulate("Realsys.fmu");

5 Monitor m = new Monitor(sys,shadow); m.run(1.0);

Integration

• Type of FMO directly checked against model description

• Variables become fields, functions become methods

• Causality reflected in type

Knowledge Structures over Simulation Units, Kamburjan and Johnsen [ANNSIM’22]

The Semantically Reflected Digital Twin 29 / 36

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units

(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow

2 class Monitor(FMO[out Double val] sys,

3 FMO[out Double val] shadow)

4 Unit run(Double threshold)

5 while shadow != null do

6 sys.doStep(1.0); shadow.doStep(1.0);

7 if(sys.val - shadow.val >= threshold) then ... end

8 end ...

Is this twinning something? Is this setup correctly?

The Semantically Reflected Digital Twin 29 / 36

SMOL and FMI

Functional Mock-Up Interface (FMI)

Standard for (co-)simulation units, called function mock-up units

(FMUs). Can also serve as interface to sensors and actuators.

1 //simplified shadow

2 class Monitor(FMO[out Double val] sys,

3 FMO[out Double val] shadow)

4 Unit run(Double threshold)

5 while shadow != null do

6 sys.doStep(1.0); shadow.doStep(1.0);

7 if(sys.val - shadow.val >= threshold) then ... end

8 end ...

Is this twinning something? Is this setup correctly?

The Semantically Reflected Digital Twin 29 / 36

SMOL and FMI

SMOL with FMOs

FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(FMO[out Double val] sys,

2 FMO[out Double val] shadow)

run:monitor prog:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

The Semantically Reflected Digital Twin 30 / 36

SMOL and FMI

SMOL with FMOs

FMOs are objects, so they are part of the knowledge graph.

1 class Monitor(FMO[out Double val] sys,

2 FMO[out Double val] shadow)

run:monitor prog:sys "System"

0.0

smol:hasVar

smol:hasName
run:sha"Shadow"

run:val

run:val

"val"

smol:hasName

smol:hasName

prog:sysprog:shadow

smol:Simulation smol:Simulation

a a a

Output
smol:hasKind

0.0

sm
ol:
has

Va
r

run
:va

l

The Semantically Reflected Digital Twin 30 / 36

Using the Semantical Lifting

SPARQL

Define structural requirements as queries in SPARQL on combined

knowledge graph, to use domain constraints on digital twin.

Query to detect non-sensical setups:

SELECT ?room WHERE { ?ctrl a prog:Controller.

?ctrl prog:Controller_left ?room.

?ctrl prog:Controller_right ?room }

The Semantically Reflected Digital Twin 30 / 36

Using the Semantical Lifting

SPARQL

Define structural requirements as queries in SPARQL on combined

knowledge graph, to use domain constraints on digital twin.

Query to check structural consistency for heaters:

SELECT * WHERE { ?o1 prog:Room_id ?id1. ?h1 asset:id ?id1.

?o2 prog:Room_id ?id2. ?h2 asset:id ?id2.

?h1 htLeftOf ?h2.

?c a prog:Controller.

?c prog:Controller_left ?o1.

?c prog:Controller_right ?o2}

The Semantically Reflected Digital Twin 30 / 36

Demo

Inconsistent Twinning

Self-Adapting to Structural Drift

Detecting Structural Drift

The previous query can detect that some mismatch between asset model

and program state exists.

How to detect where the mismatch is and how to repair it?

• Retrieve all assets, and their connections by id (M)

• Remove all ids present in the digital twin

• If any id is left, assets needs to be twinned (A)

• Find kind of defect to plan repair (P)

• Execute repair according to connections (E)

• Monitor connections using previous query

• (And v.v. to detect twins that must be removed)

The Semantically Reflected Digital Twin 31 / 36

Example: Adding a New Room

• Get all (asset) rooms and their neighboring walls

• Remove all (twinned) rooms with the same id

• Use the information about walls to

• Assumption: at least one new room is next to an existing one

1 class RoomAsrt(String room, String wallLt, String wallRt) end

2

3 List<RoomAsrt> newRooms =

4 construct(" SELECT ?room ?wallLt ?wallRt WHERE

5 { ?x a asset:Room;

6 asset:right [asset:Wall_id ?wallRt];

7 asset:left [asset:Wall_id ?wallLt]; asset:Room_id ?room.

8 FILTER NOT EXISTS {?y a prog:Room; prog:Room_id ?room.} }");

The Semantically Reflected Digital Twin 32 / 36

Demo

Repair

Remarks

Assumptions

• We know all the possible modifications up-front

E.g., how to deal with a heater getting new features?

• We know how to always correct structural drift

• Changes do not happen faster than we can repair

Monitoring is still needed to (a) ensure that repairs work correctly, and

(b) detect loss of twinning due to, e.g., unexpected structural drift.

The Semantically Reflected Digital Twin 33 / 36

Wrap-Up

Summary

Sensor Data

Commands

DTPT
Digital Twins and the FMI

Modern systems with interconnected

physical asset and digital model.

Semantic Lifting and Asset Models

Interpret program state as knowledge graph

to connect with asset model – use industrial

standards.

conf conf'

conf''

Structural Self-Adaptation

Use semantic technologies to query and mon-

itor combined knowledge graph from asset

model and program state.

The Semantically Reflected Digital Twin 34 / 36

Summary

What have we used to construct a

self-adaptive, semantically reflected Digital Twin?

Technologies

• Semantic Web

technologies

• OWL/Protege

• RDF, SPARQL

• Physical modeling,

interfacing

• Modelica, FMI

• SMOL

Concepts

• Digital Twins

• Self-Adaptation through

MAPE-K loop

• Semantically lifted

programs

• Asset models

The Semantically Reflected Digital Twin 35 / 36

Current Research Questions

Digital Twins and Formal Methods

• How to use the fully formal setting for static analysis?

• How to generate digital twins automatically?

• How to deal with concurrency?

Digital Twins@UiO

If you are interested in semantic technologies for programs or digital

twins, contact us under

X@ifi.uio.no, X∈{einarj, sltarifa, rudi, eduard}

Thank you for your attention

The Semantically Reflected Digital Twin 36 / 36

X@ifi.uio.no

Current Research Questions

Digital Twins and Formal Methods

• How to use the fully formal setting for static analysis?

• How to generate digital twins automatically?

• How to deal with concurrency?

Digital Twins@UiO

If you are interested in semantic technologies for programs or digital

twins, contact us under

X@ifi.uio.no, X∈{einarj, sltarifa, rudi, eduard}

Thank you for your attention

The Semantically Reflected Digital Twin 36 / 36

X@ifi.uio.no

Current Research Questions

Digital Twins and Formal Methods

• How to use the fully formal setting for static analysis?

• How to generate digital twins automatically?

• How to deal with concurrency?

Digital Twins@UiO

If you are interested in semantic technologies for programs or digital

twins, contact us under

X@ifi.uio.no, X∈{einarj, sltarifa, rudi, eduard}

Thank you for your attention

The Semantically Reflected Digital Twin 36 / 36

X@ifi.uio.no

	Wrap-Up

